
Semantic Modeling and Inference with Episodic
Organization for Managing Personal Digital Traces

(Short Paper)

Varvara Kalokyri, Alexander Borgida, Amélie Marian, Daniela Vianna

Dept. of Computer Science, Rutgers University, New Brunswick, NJ 08903
{v.kalokyri,borgida,amelie,dvianna}@cs.rutgers.edu

Abstract Many individuals generate a flood of personal digital traces (e.g., emails,
social media posts, web searches, calendars) as a byproduct of their daily activ-
ities. To facilitate querying and to support natural retrospective and prospective
memory of these, a key problem is to integrate them in some sensible manner.
For this purpose, based on research in the cognitive sciences, we propose a con-
ceptual modeling language whose novel features include i) the super-properties
“who, what, when, where, why, how” applied uniformly to both documents and
autobiographic events; and ii) the ability to describe prototypical plans (“scripts”)
for common everyday events, which in fact generate personal digital documents
as traces. The scripts and wh-questions support the hierarchical organization and
abstraction of the original data, thus helping end-users query it. We illustrate the
use of our language through examples, provide formal semantics, and present an
algorithm to recognize script instances.

Keywords: personal digital traces, conceptual model, scripts, plan recognition

1 Introduction

Our modern lives produce digital traces consisting of “personal digital documents”
(PDDs) resulting from sources such as email, messaging, calendars, social media posts,
web searches, purchase histories, GPS location data, etc.1

Our goal is to use this information to help users supplement their retrospective and
prospective memory, as envisioned in the “personal memex” of Vannevar Bush [4].
In addition to the problem of user interfaces for such systems, the key difficulty is
integrating the heterogeneous and disparate kinds of PDDs.

Traditional research on Personal Information Management (PIM) has been “object
centric”, in the sense that the programs were intended to identify objects and represent
semantic relationships between them, so that “finding” was supported by associative
search . We believe that this is in part because of the field’s origins lie in supporting
office work, where finding files and other office objects was the standard use-case.

In contrast, a core feature of our work is the existence and exploitation of PDDs
from a wider variety of sources. Each individual information source may have its own

1 We immediately acknowledge the sensitive nature of this information, and the very important
privacy issues that they raise.



natural (semi)structure (e.g., from, to, date, subject, body for an e-mail). What is needed
is some way to integrate these “document schemas”. One hypothesis embodied in our
proposed conceptual model is that most information about a PDD can be fitted as an-
swers to the questions who, what, when, where, why and how (the w5h questions),
thereby providing a way of correlating the information on different kinds documents
in a manner that is natural to humans. For example, the who property of an email in-
clude the sender and all the recipients, while the who property of a Facebook messen-
ger/Google Hangouts conversation include the creator and the participants. Given this
integration, one can provide relatively simple keyword search support along the “w5h
dimensions”.

A more significant novelty of our proposal, compared to traditional PIM, is mo-
tivated by the cognitive science literature (e.g., [15,16]), which shows that the inten-
ded use-cases are closely related to enhancing the user’s autobiographic memory. This
memory is centrally concerned with the events in one’s life, which provide a narrative
that connects the PDDs. For example, some emails concerning dinner, a confirmation of
an OpenTable reservation, a Lyft receipt, and a credit-card payment, make much more
sense as part of an episode of going out to dinner, if they have similar when, where, and
who dimension values. Therefore, another hypothesis our work is that in developing a
conceptual model for PDDs, one must make equal room for the modeling of events,
both atomic actions and complex events. For the latter, we were inspired by the idea of
scripts introduced by Schank and Abelson [13] for language understanding. These are
stereotypical plans for common situations. Our current language for describing plans is
based on Hierarchical Task Networks [7].

This paper illustrates the use of our proposed language through examples, provides
a syntax and a formal semantics, and presents an algorithm to recognize script instances.
It is a companion to the workshop paper [9] discussing some empirical results.

2 Related Work

We briefly mention here some of the many areas of related work.
The case for a unified logical data model for personal information has been made

repeatedly in PIM, as has the use of ontologies (e.g., [11]) and semantic models like
RDF(S) (e.g., [10]).

Since we are interested in representing (autobiographic) events and their instances,
there is a vast literature on composite process and event representation spread across a
wide variety of areas.

First, there are numerous formal process representation languages including pro-
gram logics. Then there are the many graphical notations for describing real-world
processes, such as Petri Nets, workflows and business process notations. These are all
“prescriptive” in nature, while we are interested in “descriptive” formalisms that allow
us to recognize script instances.

This leads us to several relatively closely related areas: Activities of Daily Living,
Ambient Intelligence, Behavior Recognition and LifeLogging. A few relevant surveys
are [2,12]. These areas separate two aspects: (i) the segmentation and recognition of



class DOCUMENT is a ENTITY {
hasPart : set of ENTITY;
who : set of PERSON
what < hasPart: set of DOCUMENT;
when : set of TIME;
where : set of LOCATION;
why : set of GOAL; }

class SEND is a ACTION {
sender < who: PERSON;
recipients<who: set of PERSON;
theme < what: DOCUMENT
whenSent < when : TIME }

class EMAIL is a DOCUMENT {
features:
threadId : STRING;

properties:
from < who : PERSON;
to < who : set of PERSON;
...

actions
send : SEND
forward : FORWARD

constraints
from = send.sender ;
send.whenSent < when;

... }

Figure 1: Specification of SEND and EMAIL classes

atomic actions from (continuous) sensor/video data; (ii) the recognition of complex
events composed of atomic ones.

A significant number of the approaches for complex event recognition are foun-
ded on probabilistic techniques, which rely on Machine Learning of process schemas
followed by probabilistic inference. While data sets for this are easily generated for
sensors, they are much harder to obtain in our case because of privacy issues, and be-
cause (as we shall see) personalized variants predominate [9].

There is extensive literature in the field of AI on plan recognition. A snapshot of
this appears in [8], and references to it. As with complex event recognition, probability-
based approaches using learning are frequent. We seem to have more in common with
approaches that use plan libraries for recognition. An interesting approach is the work
of Geib et al [7], which is based on parsing hierarchical task networks (see Section 4),
yet yields probabilistic results through “model counting”.

The most important difference of our use cases from all the above approaches is that
most of the digital traces we see are not part of any script, and a very large fraction of the
plan steps in any particular instantiation of a script leave no trace (“missing actions”)2.

3 A conceptual model for entities and atomic actions

Real-world entities. We start from a standard object-centered conceptual modeling lan-
guage, whose fundamental notions include individuals (e.g., Calvin) that are related by
binary properties (e.g., hasFriends). Individuals are grouped as instances of classes
(e.g., PERSON). Classes specify restrictions on the range of values that properties can
take for their instances, and at least whether they are functional (set of indicates that

2 The case study in [9] showed that 194 out of 316 episodes of eating out (61%) had a single
PDD, corresponding to a single action in the plan associated with them.



there is no upper bound on the number of fillers). Classes can be specialized into sub-
classes (e.g., RETIRED is a subclass of PERSON), during which new properties may
be added, or existing properties may be restricted. Most importantly, properties can
also be specialized into sub-properties (e.g., hasCloseFriends is a sub-property of
hasFriends). We will use the notation hasCloseFriends < hasFriends to in-
dicate such specialization relationships between properties.

Actions. We have argued that a key part of the conceptual model for PIM are events.
We focus here on modeling primitive/atomic events, which we call actions. The most
important part of describing actions is presenting their participants, the roles they play
and restrictions on them. We illustrate this in Figure 1, where the description of SEND
includes properties for the important participants. So sender < who : PERSON is in-
terpreted as saying that sender takes as value a PERSON instance, and is a sub-property
of the who property.

Personal documents: We want to model PDDs in such a manner that w5h provide a
unifying framework. For example, we will want to describe emails or reservations. Note
however that there is no natural way to answer questions like “when?” or “who?” of
such objects. (This is even more evident in the case of physical objects, like chairs say.)
But if the object participates in an action, it can “derive” its when from the action. Thus
one can ask when a message was sent, ... Therefore the model needs to express the
natural properties of the PDD, connect to the actions involving it, and then assert the
relation between their respective properties. One way to do this, inspired by our work
on service description [3], is illustrated in Figure 1, where EMAIL is connected to the
SEND action through the send property, and then constraints equate the to property of
the email to the send.sender property path, which passes thru the SEND action. This
equation can be used to infer one path value when the other one is known.

We can now re-state our original hypothesis: a large subset of the properties of
PDDs as well as of the actions, can be usefully viewed as specializations of w5h (who,
what, where, when, why, how), when these are viewed as properties themselves. The
result is the principled integration of heterogeneous object schemas we suggested.

Semantics and Inference The above notation can be easily captured in UML, extended
to support association hierarchies, which in turn can be translated to description logics
(DLs) such as OWL3. (See [1] for an example translation.) DLs have precise formal
semantics, and in fact languages such as OWL can express many more constraints, if
needed. Several standard inferences are defined based on this semantics, and are sup-
ported by standard implementations of OWL, including class inconsistency (Is the spe-
cification of a class inconsistent, in the sense that it can never have any instances?) and
instance recognition (Is an individual, with (partially) specified properties, necessarily
an instance of some given class?).

One problematic feature of our language are constraints, called “complex role in-
clusions” in the DL literature. The general form we desire (p1 ∼ q1.q2. · · · .qn where
∼ is =,v,w) is known to lead to undecidability of reasoning in most DLs. So such
constraints can only be used to propagate information, using (epistemic) rules.

3 https://www.w3.org/TR/owl2-overview/



4 Conceptual model for scripts

Our aim in using script instances is to organize PDDs, abstract out relevant information
from them, and help humans access and make sense of episodes in their lives.

Therefore, relevant aspects of scripts include: (i) their goal (for purposes of hu-
man understanding; see [16,13]); (ii) summary information of the participants in the
plan, and other descriptive properties, especially w5h aspects; (iii) the hierarchical de-
composition into sub-scripts and primitive actions (together with restrictions on their
ordering), which describe how the script plan achieves its goal.

Our system will start with a a library of common, everyday scripts. Since this plan
library will not be used to construct plans, only to recognize instances that have been
enacted, we can consider only plan skeletons, which ignore issues like pre- and post-
conditions for performing actions. Also, since our application for organizing PDDs does
not require perfect execution of all episodes, the plans we describe can be stereotypical.

We start here from Hierarchical Task Networks (HTNs) [5], which are a classical
expressive notation in AI for planning and plan recognition. To describe the “body”
of a plan, which determines the set of valid atomic action sequences, a non-atomic
script/goal T can be refined in one of two ways:

T := (Or S1, ...,Sn) T can be accomplished by achieving one of S1, ...,Sn;
T := (And S1, ...,Sn(P)) T can be accomplished by achieving all of S1, ...,Sn, subject

to the precedence constraints i≺ j in P, requiring Si to end before the start of S j.

The following frequently occurring patterns that can be expanded into the above And
and Or constructs with the use of the no op action:

sequencing S1 ; S2 (And S1,S2 ({1≺ 2}))
iteration (Loop S) T := (Or (S ; T ) , no op)
optionality (Optional S) (Or S,no op)

Future work concerns the addition of concurrency to the language.
Scripts also have properties, analogous to those of ordinary atomic actions and

reminiscent of parameters/local variables in programs; and constraints relating these
to the properties of their sub-scripts or actions mentioned in the body.

We illustrate these ideas by referring to Figure 2, which describes the Eating Out

(“going out to eat”) script.
First, the values of whoAttended, whenEating, etc. describe and identify each

script instance. Gathering the information into these properties provides the kind of
higher level aggregation/organization of information in PDDs that we were looking for.
Note that these properties are also organized along the w5h dimensions.

The body essentially describes the subgoals of the script plan. In this case, after an
action initiating the idea of going out on this occasion, there are discussions about when,
who, where (and hence what) to eat, which can be carried out in any order. Deciding
when to eat in turn can be modeled by a script which shows exchanges of suggestions
and discussions until agreement is reached.

As with regular classes, constraints like AttendEatingOut.whatEaten = what-

Eaten, can be asserted to propagate information between a script and its sub-scripts, if
we assume each subscript is uniquely named.



class Eating Out is a SCRIPT
locals:
whoAttended < who: set of PERSON
whereEating < where : EATERY
whenEating < when : TIME
whatEaten < what : set of FOODS
purpose < why : GOAL

body
InitiateGoingOut ;
(Loop ( Or DiscussWhenToEat,
DiscussWhoWillEat,
DiscussWhereToEat ) )

(Optional MakeRstReservation);
AttendEatingOutEvent

} // end Eating Out

class AttendEatingOut is a SCRIPT{
body
GetToEatery ;
CheckIn ;
(Or (OrderFood ; BeServed),

SelfServeFood ) ;
Eat ; Pay ; LeaveEatery }

Figure 2: Definition of Eating Out script and a sub-script

An instance of a script will have fillers for local properties, and an associated par-
tially ordered set of sub-script and atomic action instances, which conform to the body.
The major difference is that some participants and sub-scripts might be missing (be-
cause we may lack evidence for them in the form of PDDs).

Semantics. In the absence of conditions on states, the formal semantics of HTN inter-
prets the above as a context-free-like grammar describing valid sequences of atomic
tasks. An OR-decomposition corresponds to grammar rules T ← S1,T ← S2, .... An
AND-decomposition, when P is empty, corresponds to (exponentially many) rules for
all permutations of S1, ...,Sn. The above notation is powerful, because the task names
can be used recursively, as in S := (And (a,S,b),{1≺ 2,2≺ 3}).

5 Recognizing Script Instances from Documents

Let us review the context. We start with a model of the domain – classes for PDDs and
scripts we are interested in. We then collect a large database of individual instances
of PDD classes (the majority unrelated to any scripts). Our objective is to create epis-
odes (instances of scripts) that the user was involved in, and relate them to documents.
Algorithm 1 describes the steps for recognizing instances of script type S .
We give further details of the algorithm steps, with reference to S = Eating Out .

Step 1: Retrieving documents D: First, create a list L of “trigger words/phrases”,
whose occurrence indicates that a document has something to do with an instance of
script class S . To find these words, look for goal sub-script(s)/action(s), and identify
verbs that indicate an occurrence of it. E.g., for Eating Out, the goal is AttendEating-
Out, and indicative verbs are “eat” or “eat out”. Next, generate a list of synonyms and
hyponyms based on these verbs. To make this process replicable, we have used standard
sources of synonyms and hyponyms like WordNet. In addition, one must also consider
the w5h participants of these events by using resources like FrameNet [6], and again
generate synonyms and hyponyms. For example, “restaurant” is a discriminating where
value of “eat”, which should be included in the search term list. The final list includes



Algorithm 1 Algorithm for constructing instances of script class S

1: D := documents indicating any potential instance of script class S ;
2: Candidates := /0;
3: for all d ∈ D do {
4: Candidates += new instance cd of script class S , based on d;
5: rate the strength of evidence for cd ; }
6: repeat until no changes in Candidates {
7: MergeSet := { d ∈Candidates such that there is sufficient corroboration that they refer
8: to the same real-world event };
9: Candidates := (Candidates−MergeSet) ∪ {d′:=combine(MergeSet)};

10: rate the strength of evidence for d′;
11: use details of script S to look for additional documents that could be relevant to d′; }

“breakfast”, “lunch”, “dinner”, and “restaurant”, plus hyponyms. A set of documents D
is retrieved by searching for these terms, and then preprocessing them by (i) explicat-
ing/disambiguating information (e.g. terms like ”today” or ”Tuesday” are made abso-
lute dates), (ii) performing entity resolution, (iii) grouping certain kinds of documents
(e.g., related email threads/tweets).

Steps 4&5: Creating initial script instances cd . Each retrieved document d results in
a candidate instance cd of S , with some of its (sub)properties filled based on the doc-
ument’s w5h properties. For example, a restaurant credit card charge provides evidence
for the attendEatingOut sub-script, together with information on its when/whereEating-
Occurred, and one whoAttended value (the cardholder). We then assign a score Score(cd)
to cd based on the strength of the evidence that d manifests. This strength is based on
the document type (e.g. a restaurant credit card charge is stronger evidence than an
email), the location of keywords (e.g. in the subject of an email rather than body), or of
the originator (e.g., the user being the sender rather than recipient).

Steps 7−10: Growing script instances from MergeSet. In order to combine multiple
sources of evidence for the same script instance, S needs to specify “keys”: a rating of
how w5h (sub)properties help identify instances. For the Eating Out case, important
keys are when/whereEatingOccured and, to a lesser extent, who. Each key-property
can be assessed for similarity (e.g. time difference for when). Once two instances of
S are judged sufficiently similar, they become merge candidates, and are combined by
unioning their property fillers. The score for the merged instance is 1−∏s∈MergeSet(1−
Score(s)). This formula is Hooper’s rule [14] for combining probabilistic evidence.

6 Summary

This paper addressed the problem of managing a database of personal digital traces.
It introduced a semantic modeling language for entities, also used to describe digital
documents and related activities. The novel feature of this language is organizing many
object properties into hierarchies with w5h questions at the top. These help organize
and unify the many heterogeneous data . The language was extended to support the
representation of scripts, which are stereotypical plans with a mereological hierarch-
ical structure — an idea motivated by research in the cognitive sciences [13,16]. The



w5h organization was continued. Script instances connect the PDDs generated by ac-
tions into meaningful episodes, and extract from them relevant summary information,
in order to reconstruct autobiographic memories.

Instance recognition for scripts, in contrast to plans and complex events, is complic-
ated by several factors: 1) The evidence for the occurrence of atomic actions in the form
of PDDs is highly uncertain (in principle, an email can describe any task in the world!).
2) Most PDDs we collect are unrelated to any of the everyday scripts we foresee having
in the library, so these must be ignored. 3) Most of the steps in any instantiation of a
script do not leave digital traces. For this reason, the paper proposed a novel heuristic
algorithm for recognizing the instances of a script, which was based on retrieving PDDs
that contained systematically chosen keywords, and merging candidate instances.

A small case study involving the Eating Out script [9] gave instance recognition
precision ranging from 0.32% to 0.75% per user4, showing that there are major differ-
ences between subjects and how they generate PDDs.

References

1. Berardi, D., Calvanese, D., De Giacomo, G.: Reasoning on UML class diagrams. Artificial
Intelligence 168(1), 70 – 118 (2005)

2. Bikakis, A., Patkos, T., Antoniou, G., Plexousakis, D.: A survey of semantics-based ap-
proaches for context reasoning in ambient intelligence. In: Euro. Conf. on Ambient Intelli-
gence. pp. 14–23. (2007)

3. Borgida, A., Devanbu, P.T.: Adding more “DL” to IDL: towards more knowledgeable com-
ponent inter-operability. In: Proc. ICSE’99. pp. 378–387 (1999)

4. Bush, V.: As we may think. The Atlantic Monthly July(1) (1945)
5. Erol, K., Hendler, J., Nau, D.S.: HTN planning: Complexity and expressivity. In: AAAI’94,

pp. 1123–1128 (1994)
6. Fillmore, C.J., Johnson, C.R., Petruck, M.R.: Background to Framenet. International Journal

of Lexicography 16(3), 235–250 (2003)
7. Geib, C.W., Goldman, R.P.: A probabilistic plan recognition algorithm based on plan tree

grammars. Artificial Intelligence 173(11), 1101–1132 (2009)
8. Goldman, R.P., Geib, C.W., Kautz, H.A., Asfour, T.: Plan recognition (dagstuhl seminar

11141). Dagstuhl Reports 1(4), 1–22 (2011)
9. Kalokyri, V., Borgida, A., Marian, A., Vianna, D.: Integration and exploration of connected

personal digital traces. In: Proc. of ExploreDB’17 Workshop. pp. 1–6. ACM (2017)
10. Karger, D., et al: Haystack: A General-Purpose Information Management Tool for End Users

Based on Semistructured Data. In: Proc. CIDR’05, pp 13–26 (2005)
11. Katifori, V., Poggi, A., Scannapieco, M., Catarci, T., Ioannidis, Y.: OntoPIM: how to rely

on a personal ontology for Personal Information Management. In ISWC’05 Wkshp. on The
Semantic Desktop, pp. 258–262 (2005)

12. Rodrı́guez, N.D., Cuéllar, M.P., Lilius, J., Calvo-Flores, M.D.: A survey on ontologies for
human behavior recognition. ACM Computing Surveys 46(4), 43 (2014)

13. Schank, R., Abelson, R.: Scripts, plans, and knowledge. In: IJCAI’75, pp.151–157. (1975)
14. Shafer, G.: The combination of evidence. Int. J. of Intelligent Systems 1(3), 155–179 (1986)
15. Tulving, E.: Episodic memory: From mind to brain. Annual Rev. of Psych. 53, 1–25 (2002)
16. Williams, H.L., Conway, M.A., Cohen, G.: Autobiographical memory. In: Cohen, G., Con-

way, M.A. (eds.) Memory in The Real World, chap. 3, pp. 21–90. Psychology Press (2008)

4 Low-end scores were due to factors such as absence of NLP and a couple sharing credit cards.


